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Abstract. In this paper, we study the strong stability of the stationary distribution
of the imbedded Markov chain in the G/M/1 queueing system, after perturbation
of the service law (Aissani (1990), Kartashov (1981), Kartashov (1985)). We show
that under some hypotheses, the characteristics of the G/G/1 queueing system can
be approximated by the corresponding characteristics of the G /M /1 system.
Keywords. Queueing systems, Strong stability, Uniforme ergodicity, Perturba-
tions.

1 Strong stability in the G/M /1 queueing system

The applicability of the strong stability method for the G/M/1 system is not obvi-
ous (Aissani and Kartashov (1984)). In fact, the complexity of the G/G/1 system
constrains us to work on more general and complex spaces that imposes on us the
realization of some intermediate constructions which are of particular interest.

1.1 Preliminaries and notations

Consider a G/G/1 queueing system with a general service times distribution G and
a general inter-arrival times probability distribution F. The following notations are
used : 6, (the arrival time of the n'" demand), w, (the departure time of the n'"
customer), v, (the time interval from 6, to the departure of the next customer)
and V;, = V(6,, — 0) (the number of customers found in the system immediately
prior to 6,,).

Let be denote by, vp, = min{m > 0, w,, > 0.}. Then, v, = Wyy = On.

Let be consider the following sequence,

To = Wyg,. T (On +72) =0
and (1)
Ty =Tp_1+ §V9n +k ,Yk > 0.

The sequence {T} }ren describes the departure process after 6,,.

Let’s also consider a G /M /1 system with exponentially distributed service times
with parameter y and with the same distribution of the arrival flux than the G /G/1
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one. We introduce the corresponding following notation : 0, &n, n and Vo =
V (A, — 0) defined as above. We also define the process {Tn }nen as the sequence

{Tn }:
In the sequel, when no domain of integration is indicated, an integral is extended
over R

1.2 Strong stability of the imbedded Markov chain in the
G/M/1 queueing system

Lemma 11. The sequence Xy = (Va,Vn), forms a homogeneous Markov chain
with state space N x RY and transition operator @ =|| Qij |lsj>0, defined by

Qij(-r,dy) = P(VYnJA =J,Yn+1 € dy/‘fn =1,V = x)

qi-j(z,dy) for1<j<i, 121,
= ZkZiQk(~T:dy) forj=0, 12> 0,
p(z,dy) forj=i+1,i>0,
0 forj>i+1,i2>0.
where
a(@,dy) = [ P(T < u—a < Ti1, Tepr — (u— @) € dy)dF (u)
and (2)

p(x,dy) = [} P(z — u € dy)dF(u).

Lemma 12. The sequence Xn = (Vn,¥n), forms a homogeneous Markov chain
with state space N x RY and transition operator Q =|| Qij |li,j>0, having a same
form as @ (lemma 22) where,
o] _ k
a = [ el arq) ©
v !

Remark 9. The assumption p = A/p < 1 implies the existence of a stationary
distribution 7 for the imbedded Markov chain X, in the G/M/1 system. This
distribution has the following form,

7({k}, A) = 7e(A) = prE(4), V {k} C Nand A CR", (4)
where pi = limp— oo P(Ve = k) is given by the following relation,
pe=(1—-0)" k=0,1,2,... (5)
o is the unique solution of the equation
o= F(u—po)= [ e ar@) ©)
0

F* is the Laplace transform of the probability density function of the demands’
inter-arrival times. We can show that, 0 < o < 1 (Kleinrock 1976).
Otherwise, note that,

lim P(X(t) = k) = ppr—1, and lim P(X(t) = 0)=1-p (7)
t—oo t—o0

where, X (t) represents the size of the G/M/1 system at time ¢ and k=1,2,...



174 Benaouicha and Aissani

The formulas (5) and (7) permit us to compute the stationary distribution of the
queue length in a G /M /1 system. Unfortunately, for the G/G/1 system, these exact
formulas are not known. So, if we suppose that the G/G/1 system is close to the
G /M /1 system and if we show the strong stability in the G/M/1 queueing system
(Aissani (1990), then we can use the formulas (5) and (7) to approximate the G/G/1
system characteristics with prior estimation of the corresponding approximation
error.

Suppose that the service law of the G/G/1 system is close to the exponentially
one with parameter p. This proximity is characterized by the distance of variation,

W* =W"(G,E) = /heﬁ’[G—E|(dt) , where 6> 0 (8)

Let be consider the o-Algebra £, who represents the product £ @ £ (€1 is the o-
Algebra generated by the countable partition of N and &> is the borelian o-Algebra
of RT).

We introduce in the space m& of finite measures on &£, the special family of

norms || . ||,
lcll= 3 [ ot n)lsl(ay) (9)
j20

where v is a measurable function on N x R™, bounded below away from zero (not

necessary finite).

This norm induces a corresponding norm in the space f€ of bounded measurable
functions on N x R™, namely,

I £ ll= supsup[v(k,2)]""|f (k,x)|, ¥f € f€ (10)
k>0 2>0
as well as a norm in the space of linear operators, namely,
|| P |lo= supsup[v(k,z)] " Y / v(j, y)| Prj (z, dy)| (11)
k>0 2>0 >
We associate to each transition kernel P the linear mapping P : f€ — f& acting
on f € f& as follows,
(PH2) =Y [ Puslady)fGiw) (12)
720
For p € m€ and f € f&€ the symbol puf denotes the integral
uf =% [ st fGia) (13)
j20

and f o pu denotes the transition kernel having the form

(fop)ij(x,A) = f(i,z)pu;(A) (14)
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We apply the theorem 2 (Kartashov 1981) to the imbedded Markov chain X,
(defined in lemma12).
Consider the test function,

v:NxRT = R*

(k,z) + v(k,z)= B*e’" (15)
where, 1 <3 <1/o and 0 <é=p — & < p, (o is given by relation (6)).
Let o be a measure defined as follows, for {j} x dy € £, we have,
al{7} x dy) = a;(dy) = {f ey (16)
And the measurable function
h:NxRt - R (17)

(i,2) = hi(e) = h(i,z) = Ty G (2)
where gi (z) is defined by the relation (3).

Lemma 13. Let X, be the Markov chain defined in lemma 12. Then, the operator
T=Q—hoa=|Ti(z,dy) |lij>o0 is non-negative.

Proof. In fact, it is easily seen that,

0 for j =0,

Tij(x,dy) =< -
(@, dy) {Qij(z,dy) for 7 > 0.

hence the result.

Lemma 14. Yz >0, V3 > 1 and for 6 = p— %5 > 0, the following inequality holds.
/ dF (u) / VP(z —u e dy) < /0 AR (u). (18)
0 0
Proof. It’s sufficient to notice that,
/IdF(u)/OIeéyP(m—u € dy) =/OIdF(u)/OIe‘S"’P(y<z—u§ y +dy)
0
< /T et EWGF (u)
0

Lemma 15. Suppose that in the G/M /1 system, the following geometric ergodicity
condition holds,

ur >1 (19)
Then, VB € R such that, 1 < 3 < 1/o, the following inequality is true,

BF (u— %) €1 (20)

o and F™ have been defined in the relation (6) and T is the mean inter-arrival time
wn the G/M/1 system.
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Proof. Let’s consider the function
vil,1/0] = R*
B e BF (&)

From the convexity of 1 and from the relation (6), we have the result.

(21)

Lemma 16. For a function v such that, vk, z) = gred®,
with 1 <3< 1/o and § = p(1 —1/8) > 0,
The following inequality holds,
(Tv)(k,z) < pv(k,x) (22)
where p = BF* (u — <1

Proof. From the relation (12) and from the lemmas 22, 12 and 13, we have,

)2 = Y [Tt i) = T [ @uedietin)

i>0 i>0

S5k+1[/ e~u<u‘z)e'§<”"‘)dF(u)+/'e‘s(r_”)dF(u)]
- 0

<p'e s [ ear)
0

from which we obtain the result.

Lemma 17. Let Q be the transition kernel of the imbedded Markov chain X, in
the G/M/1 system. Then, || Q ||l.< oo

Proof. From the relations (12) and (11), the proof can be easily established by the
lemmas 13 and 16.

All the conditions of the theorem 2 (Kartashov 1981) are satisfied, then we can
state the following result.

Theorem 1. Suppose that in the G/M/1 system, the geometric ergodicity condi-
tion (19) holds.

Then, VB € RY such that, 1 < 8 < %, the Markov chain X,, is strongly v-stable for
a function v(k,x) = B*e%,

where, 0 <6 =p— & <p and p=BF (p—5) < 1.

Proof. The proof of this theorem is completely established from the previous lem-
mas.

Remark 10. To “measure” the performances of the strong stability method in a
G/M/1 queueing system, after disturbing the service duration, we can use a general
approach based on discret-event simulation (Banks 1996). We choose, for example,
the Weibull probability distribution for modeling the demands’ inter-arrival dura-
tion in both systems (G/G/1 and G/M/1) and the Cox probability distribution for
the service duration in G/G/1 queueing system.

From the results obtained by repetition of these simulations, we estimate the
margin between the corresponding characteristics of the simulated queueing sys-
tems. finally, we use the student’s test to construct the confidence intervals for
these margins.
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